Model-Driven Clustering of Time-Course Gene Expression Data
نویسندگان
چکیده
Anne Badel-Chagnon , Gaëlle Lelandais , Serge Hazout and Pierre Vincens Equipe de Bioinformatique Génomique et Moléculaire, Inserm E0346, Université Paris 7, case 7113, 2 Place Jussieu, 75251 Paris, France Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France Département de Biologie (FR36), Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France Email : badel,hazout @urbb.jussieu.fr, lelandais,vincens @ens.fr
منابع مشابه
Clustering of time-course gene expression profiles using normal mixture models with AR(1) random effects
Motivation: Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the ...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملNonlinear-Model-Based Analysis Methods for Time-Course Gene Expression Data
Microarray technology has produced a huge body of time-course gene expression data and will continue to produce more. Such gene expression data has been proved useful in genomic disease diagnosis and drug design. The challenge is how to uncover useful information from such data by proper analysis methods such as significance analysis and clustering analysis. Many statistic-based significance an...
متن کاملDeveloping a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملClustering of time-course gene expression data using a mixed-effects model with B-splines
MOTIVATION Time-course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. To account for time dependency of the gene expression measurements over time and the noisy nature of the microarray data, the mixed-effects model using B-splines was introduced. This paper further explores such mixed-effects model in analyzing the time-course gene exp...
متن کاملBayesian model-based tight clustering for time course data.
Cluster analysis has been widely used to explore thousands of gene expressions from microarray analysis and identify a small number of similar genes (objects) for further detailed biological investigation. However, most clustering algorithms tend to identify loose clusters with too many genes. In this paper, we propose a Bayesian tight clustering method for time course gene expression data, whi...
متن کامل